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HIF Note Number 96-12 September 24, 1996

_—— To: HIF Note Mailing List
From: John Barnard _
~——— Subject: Implications of Pulser Voltage Ripple

In a recent set of measurements obtained by G. Kamin, W. Manning, A. Molvik, and
J. Sullivan, the voltage waveform of the diode pulser had a ripple of approximately +1.3%
of the 65 kV flattop voltage, and the beam current had a larger corresponding ripple of
approximately 3:8.4% of the 1.5 mA average current at the location of the second Faraday
cup, approximately 1.9 m downstream from the ion source. The period of the ripple was
about 1 ps. It was initially unclear whether this large current ripple was in fact a true
measurement of the current or a spurious measurement of noise produced by the pulser
electronics. The purpose of this note is to provide simulations which closely match the
experimental results and thereby corroborate the physical nature of those measurements,
and to provide predictions of the amplitude of the current ripples as they propagate to the
end of linear transport section. Additionally analytic estimates are obtained which lend
some insight into the nature of the current fluctuations and to provide an estimate of what
the maximum amplitude of the current fluctuations are expected to be, and conversely
what initial ripple in the voltage source is allowed, given a smaller acceptable tolerance on
the line charge density. ‘

Simulations

1D HINJ simulations were carried out using the pulser voltage waveform that was
obtained on 4 September 1996. The waveform was cutoff at 10 us to afford a reasonable run
time. HINJ is described in ref. 1. In these calculations, a greens function solution is used
for particles within an ideal 1D (2) diode, but outside of the diode the fields are calculated
using a particle-in-cell formalism, using the modified Poisson’s equation described in ref.
1. On passage from the diode to the matching section the beam passes through a circular
aperture reducing the current to 15 to 20% of the original current. This fraction is treated
as a free parameter to match the dc component of the current pulse at a Faraday cup
and for these runs is given by .177. In figure 1 we show, the beam current and energy
at two Faraday cup locations (z = 0.67 m and z = 1.89 m), and the current and voltage
supplied by the pulser at z = 0. Figure 2 shows an enlargement of the experimentally
measured pulser voltage plot. Note that poor voltage resolution leads to some uncertainty
in the exact amount of the energy ripple. Figure 3 shows a composite of both the HINJ
simulation and experimental current measurement at the location of the second Faraday
cup. In order to obtain good agreement of simulation with experiment, the time coordinate
was shifted by 0.2 us. This is believed to be due to a combination of a delay time between
application of the voltage across the diode and measurement at the voltage monitor, and
also a possible higher energy input to HINJ relative to the experiment. Given these caveats,
the HINJ simulations show a relatively good agreement with the experiment suggesting
that the current measurements aré not the result of spurious noise signals. Finally, Figure



4 shows a HINJ prediction of the waveform at the end of the magnetic transport section,
nearly 5 m from the source. The amplitude of the fluctuations is approximately +25% of
the average beam current, a value that is larger than is desired for insertion into the ring.

Estimate of Density Ripple Growth

The measurements indicate a quasi-sinusoidal voltage variation of amplitude 830
V about the nominal 65 kV flattop, corresponding to a fractional beam energy varia-
tion §E/FEy =2 £0.013. The corresponding longitudinal velocity perturbation is év/vg =
4-0.0065, where the nominal velocity of the potassmm ion beam (mass 39) at 65 keV is 5.7
x10° m/ 8.

We assume a voltage ripple applied to the diode at z=0 of the form
V(z=0,t) = Vg + §Vsinwt (1)
giving rise to a ion velocity satisfying,
v(z =0,t) X v + 5v sinwi (2)

Here §V/V = 26v/v. Also, w = 6.3 x10° rad/s is the angular frequency of the 1 us voltage
ripple. The spatial length between a peak and a trough in the velocity wave [, (which is
the half-wavelength of the perturbation), is initially given by [, = mvo/w = 0.27 m. One
characteristic distance z; is the propagation distance for the velocity shear in the sinusoidal
perturbation to cause the peak to catch up with the trough. The distance z, is the length
over which wave steepening would become very apparent. If space charge forces can be
neglected, z, can be expressed as

vo lp

Zg =
Since the second Faraday cup is only located approximately 1.9 m downstream of the
source, wave steepening should not be apparent. However, the change in I, over 1.9 m
is perceptible, giving rise to a perceptible density perturbation. The change in the half-
wavelength 81, is approximately 2 (6v/vo )z, where z is the longitudinal distance from the
source. Assuming the fractional change in the line charge density A/ Aq is the same as the
fractional change in I, we find,

Qﬁ&ﬁzé_v (fi) (4)

At the second Faraday Cup at z = 1.9 m this corresponds to A/ 2 0.087, roughly
in agreement with the observed fractional current perturbation amplitude of 0.084. (In
general, the fractional current perturbation 61/l = A/ Ao+ 6v/vg. Aswill be shown év /v
is usually much smaller than §A/ Ay, so we have neglected the v /vy term, in this comparison
of the fractional line charge perturbation with the fractional current perturbation.)

—9_



Better Estimate of Ripple Growth

To obtain, a somewhat better estimate of the growth of current ripples, as well as es-
timate the requirement on the voltage pulser to deliver a specified current ripple tolerance,
we may resort to the 1-D fluid equations (see, e.g. ref. 2). The continuity and momentum
equations may be expressed as:

ax  o(w)

e + el 0 (5)
v ov ¢
5 + Ua = ;n'"Ez (6)

Here ¢ is the ion charge, m is the ion mass, and E, is the longitudinal self electric field
produced by fluctuations in the line charge density A, assumed to be in the long wavelength
lmit (see, eg. ref.[3]), '
A
E, &2 —g— 7
95, (7

where ¢ = In(b/a)/2mep is the usual g-factor, b/a is the ratio of the pipe radius to average
beam radius, and € is the free space permittivity. We may linearize equations (5) and: (6)
by letting A = A + A\; and v = vy + v; where subscript 0 indicates equilibrium quantities
and 1 indicates perturbed quantities. The linearized fluid and momentum equations are:

5)\1 6/\1 61)1 _ ;

o T TR =0 - ®
.6’[)1 avl . —q 8)\1
B il s

Transforming to the comoving frame where 2/ = z — vt and t' = ¢, yields the simpler set:

8)\1 8'01
a0 T =0 (1)
Oy g O\
 Tmiar " (1)

Taking the partial derivative of eq. (10) with respect to ¢ and the partial derivative of eq.
(11) with respect to z and combining yields (see e.g. ref. §):

82)\1 q 32)\1

9112 Eg 0512 =0 (12)

We define a space charge wave speed ¢, - (ggho/m) /2, and identify eq. (12) as the wave
equation, with general solution (ref. [2], see also ref. [6]):

M = X [Fr(z' —cat") + fL(z' + ¢st')] (13)
vy = ¢ [fr(z' — cot’) — fL(2' + cst')] (14)
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Here fr(z) and fi(z) are arbitrary functions of the argument z, representing right and
left traveling waves in the beam frame. Transforming back into the lab frame the solution
becomes:

A =X [fr{z = (vo + ¢ca)t) + fr{z — (vo — ¢s)t)] (15)
vi = ¢ [fr(z = (vo + es)t) — fr(z — (vo — ¢s)t )] (16)

To complete the solution we need to specify the boundary conditions at z = 0. Although
we are primarily interested in the effects of small errors in voltage across a diode, it is also
of interest to examine the effects of voltage errors across an induction gap, which have
slightly different boundary conditions. Voltage perturbations across a diode give rise to
current and velocity variations, whereas voltage perturbations across an induction gap give
velocity variations but no current variation. Note that z = 0 corresponds to the location
of the end of the diode, for diode voltage perturbations, and it corresponds to the center
of an induction gap for induction gap voltage perturbations. '

Boundary conditions for voltage variations across a diode. If the characteristic
timescale of the perturbations is much longer than the transit time through the diode,
then the steady-state Child-Langmuir law is valid for which the current [ o< V3/2, Thus
Li/L, = (3/2)Vi/Vy. Also, since ¢V = (1/2)ymv?, v1/ve = (1/2)V1/Vy. Finally, since
I = Jv, it follows that Ay /Ay = I,/Iy —v1/ve = V1 /Vh.

Boundary conditions for voltage variations across an induction gap. When the
beam passes through an induction gap (of zero width) with a voltage perturbation, charge
conservation requires that the instantaneous current be the same on both sides of the gap,
so that Iy /Iy = 0. However, as in the case of the diode perturbation, there is a velocity
perturbation satisfying vy /vy = (1/2)V1/Va, and therefore A1 /Ao = —(1/2)V1/Vs.

We let Vi(z = 0,t)/Vy = g(t). At z = 0 the boundary conditions for both the diode

and induction gap can be combined into a single pair of equations:

v
v = 5 g(t) (17
where
o = {—% induction gap (19)
1 diode

Applying these boundary conditions to egs. (15) and (16), allows us to solve for the general
functions fr(z) and fr(z):

fr(z) = % (a + 5%) g ((‘ﬁ_%_)) (20)

i3 222
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So the solution for all z, ¢+ which satisfy the boundary conditions at z = 0 is:

2Bl Bl n)
23 el i 2 (ate) @

Also, we may calculate I3 /Iy:

I 1 ( + 1 + ace + Vo : z )
—_— T — o — P
Io 2 7" o0 26 ) I\ (oo 1)

i 1 «e, Vg 2
= s AL PP %4
+3 (O‘+ 2" o 203)9( (fvo—cs)) ‘ (24)

(When a = —1/2, we recover the same leading coefficient in eq. (2) of ref. 6). We now let
Vi/Vo(z = 0,t) = ¢(t) = 2(év/vo) sinwt. Using the approximation that
1/(ve L cs) = (1/ve)(1 :F'om;ﬁ), equations (22) through (24) yield:

G v.
) s
-;i- = —E:i (cos[w(t — ;zo-)] sin f—:}_ész + 20:3—: sinfw(t — %)] cos %%—z) (25)
vy dv [, z weg Cy Z .. Weg ‘
— t—— —z+ 2a— t—— - (26
s o (sm[w( — )] cos > z+ avo cos[w( o )] sin 02 z) (26)

L  bv s\’ z we
'Ir'l' = —([14—2& (—s) ] cos[w(t — —)]sin —>2
0

cs . z Weg
2004+ 1)— t—— — 27
+{2a + )Uo sin]w( - )] cos o2 z) (27)
Note that in equations (25) through (27) the first term in each equation is the dominant one
and is of order dv/cs. Thus current perturbations eventually grow to the level of év/c,,
which is usually much larger than the initial fractional voltage perturbation §V/Vy =
26v fvy since usually ¢, << vy.

Now we may calculate some of the quantities of interest using the parameters of the
recirculator beam. For b/a £ 1.9, the space charge g-factor is ¢ = 1.16 x 101 V/C. The line
charge density Ag = 2.6 x 107° C/m for the 65 keV, 1.5 mA potassium beam. The space
charge wave velocity can be expressed in terms of the perveance K = gy /(2meomu?):

Co = (%g)\g) =g (K In —) : (28)

a
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For the parameters above, ¢, = 8.7 x 10® m/s. This compares with a perturbation velocity
§v = 3.5 x 10® m/s, which yields the ratio:

— (.42 (29)

As noted earlier, the maximum amplitude of the line charge density is given roughly by eq.
(29). This maximum amplitude in the line density is reached when the argument of the
sine in in the first term of eq. (25) approximately equals /2, i.e when z & 2)p4, Where

'Wvg

(30)

z'\maa: = 2wc
8

For the parameters above zx_,. = 9.3 m. (If voltage corrections are made to the pulse at
a point down the beamline, it was found in ref. [6] that zamae i5 the maximum distance
allowed before space charge effects make it practically difficult to remove such voltage
errors. )

Having such large density perturbations as implied by eq. (29), could have serious
consequernces in the beam transport through the recirculator. If we allow maximum density
perturbations (62 /Ay)maz of, say, a few per cent then a relevant question is “what is the
maximum allowed energy ripple (6E/Eg)mqz?" Since

SEN (&) . (S0 12 {(8A
(-'E—O) max B 2 (vo)mam B 2U0 (c")mam‘ B Z(I{ln(b/a)) (/\U)ma:c ’ (31)

we find that the required (6E/Eq)mas for our parameters is about 0.03 (62/Ao)maz, or
about 1.5 x10™° for a 5% allowed line charge perturbation. This is a somewhat more
stringent energy variation requirement than had been given in our original injector specifi-
cations given to Titan Beta (ref[4]). (We originally had specified + 0.5% energy variation.)
Note also that since the small recirculator perveance is only a factor of ~ 3 smaller than
the LBNL ESQ injector perveance, with similar values of Inb/a, we find that the allowed
energy ripple is smaller by a factor of 1.7 than the allowed ripple for the LBNL ESQ in-
jector, assuming the same allowed current variation. For completeness we note (sce e.g.
refs [7] and [8]) that pulse compresssion sets an independent requirement on the energy
flatness, to insure acceptable chromaticity through the final optic.

Comparison of Experiment, Simmulation, and Theory

Table 1 shows a comparison of measured and calculated values of current and energy
perturbations at the indicated z locations. For the experiment and simulation, we have
estimated half the peak to trough difference for the sccond apparent sinusoidal ripple
in the data. The theory is obtained using egs. (25) through (27), o = 1, and using
SE/E = 26v/vy. Although in qualitative agreement, the theory and simulation predict
a larger current perturbation than is experimentally observed. This may be due to the
poor resolution of the digitized voltage waveform which is used as input to both HINJ
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and theory. The initial conditions could have nearly 50% smaller amplitude and still be
consistent with the digitization of the waveform.-
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Comparison of Experiment, Simulation and Theory

z=0

First Faraday cup
z=0.67m

2nd Faraday Cup
z=1.89 m

End of Magnetic
Transport Section
z2=4.86 m

Experiment HINJ _Theory
Mo AEE, AWy AE/Ep Ally AE/Ep
0.013 | ~.02 [ 0.013 0.0195| 0.013
0.067 | 0.013 6.067 0.013
0.084 0.133 | 0.013 0.151 | 0.012
0.250 | 0.0065 | 0.321 0.009.1

Table 1.




